
Abstract
The traditional 3 � 3 cell neighborhood used in a focal
operation on a raster layer has a square shape that results
in a dimensional neighborhood of which the orientation
is eventually arbitrary to the physical features represented.
This paper presents an experiment using a circular neighbor-
hood to calculate slope gradient. Comparisons of the results
from a circular neighborhood with the results from some
traditional methods show that (a) for a smooth surface, the
result from a circular neighborhood is more accurate than
that from a square neighborhood, (b) a circular neighborhood
is generally more sensitive to noise in the input DEM than
a square neighborhood, and (c) in a validation using field
measurements, the circular neighborhood performs better
than the square neighborhood when the ratio of user-specified
neighborhood size to cell size is high.

Introduction
The traditional 3 � 3 cell neighborhood used in a focal
operation on a raster layer has two characteristics: its size is
determined by the resolution of the input layer, and its shape
is usually square. The resolution-determined size causes
inconsistency in the terrain attribute values computed from
gridded DEMs with different resolutions. This problem has
been studied by many researchers (e.g., Chang and Tsai, 1991;
Hodgson, 1995; Gao, 1997; Kienzle, 2004; Zhou and Liu,
2004). Conclusions drawn by these researchers do not totally
agree with each other (mainly due to the different bench-
marks or “true values” they used), but there is a consensus
that the DEM resolution (eventually the size of the neighbor-
hood determined by this resolution) has a strong effect on the
accuracy of the terrain attributes derived from the DEM, and in
turn on the outcome from the erosion or hydrological models
based on these attributes. The resolution-determined neigh-
borhood size also leads to the problem of mismatch between
human-perceived and computer-calculated values of terrain
attributes, people doing fieldwork (e.g., soil surveyors)
always have their own measuring scales. This mismatch has
become an important source of error in knowledge-based
digital soil mapping. Ironically, this is becoming a more
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serious problem since high-resolution DEMs are becoming
more readily available. Burt and Zhu (2002) solved this
mismatch problem by employing a user-defined neighborhood
to replace the resolution-determined neighborhood. In this
method, the user specifies the size of the neighborhood, and
the computer selects the eight cells (not necessarily contigu-
ous) that make up the square with the specified size to calcu-
late the terrain attributes for the cell at the center
of the neighborhood. This method allows the user to specify
a neighborhood size that matches the scale in their mind,
regardless of the resolution of the input DEM.

On the other hand, the square shape results in a dimen-
sional neighborhood: the values in the diagonal directions
are farther from the center of the neighborhood than the
values in the cardinal directions. This dimensional property
has a significant effect on derived terrain attributes (Zhou
and Liu, 2004) while from a physical standpoint, the orienta-
tion of a DEM grid is arbitrary. To reduce this effect, some
algorithms (e.g., Horn, 1981) assign different weights to the
cells in different directions. The square shape, after all, is
merely a convenient setting for the nine contiguous cells
that define the neighborhood. Ideally, the neighborhood
should be invariant under rotation, and an obvious choice
would be to use a circular neighborhood.

To address the shape problem, this paper presents an
experiment using a circular neighborhood in the calculation
of slope gradient. The circular neighborhood is implemented
for two gradient-calculation methods, the Evans method
and a modified Zevenbergen-Thorne method. For these
two methods, the results from the circular neighborhood
are compared with the results from the traditional square
neighborhood. Two other widely used methods, the Horn
method and the original Zevenbergen-Thorne method, have
also been included in the comparison as benchmarks. The
Evans method (Evans, 1980) was chosen, because it is
probably the most studied and has been argued to be the most
optimal method under certain conditions (Jones, 1998a and
1998b; Florinsky, 1998). Also, this method is easily adapted to
employ a circular neighborhood. The Zevenbergen-Thorne
method (Zevenbergen and Thorne, 1987) was chosen as a
representative of the methods based on the Lagrange polyno-
mial. It was chosen also because Jones (1998a) concluded
that the result from this method was more “accurate” than
results from other methods, although we found this conclu-
sion to be conditional (see the Results and Discussion
Section). The original Zevenbergen-Thorne method only uses
information from the four points in the cardinal directions,
thus the shape of the neighborhood would not affect the
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result. To test the effect of the circular neighborhood, we
implement a method that is based on the Zevenbergen-
Thorne method but can take into account the information
from both cardinal and diagonal directions. The Horn
method (Horn, 1981) was chosen as a reference, because it is
adopted by the SLOPE function of Arc/Info® and thereby
might be the most popular method in practice.

The results from these chosen methods were compared
in three ways: (a) the accuracies of different methods were
compared by differencing their results using analytical
values calculated from a synthetic surface; (b) sensitivities of
different methods to error in the input DEM were compared
using noised surfaces; and (c) correspondences of the results
from different methods to human-perceived values were
compared using a set of gradient values measured by soil
scientists in a small watershed.

The implementation of the circular neighborhood in the
two gradient-calculation methods are described in the next
section, followed by two sections detailing how the results
from the two kinds of neighborhoods were compared, one
section explaining the methods, one describing the data,
and then the comparisons are presented and discussed. The
last section contains the conclusions drawn from this
research.

Implementation of Circular Neighborhood
Definition of a Circular Neighborhood
A circular neighborhood is defined by eight points that are
on a circle centered at a point for which a terrain attribute
(e.g., slope gradient) is to be computed. The elevation at
each of these eight points can be derived through a bilinear
interpolation from the cells of the DEM. The definitions of
the square neighborhood and the circular neighborhood are
illustrated in Figure 1 for comparison. In this figure, w
equals one half of the width of the neighborhood defined by
the user; and z1, z2, . . . z8 are elevation values at those
neighborhood-defining points.

Implementation of a Circular Neighborhood
in Gradient-Calculation Methods
A number of methods have been proposed for calculating
slope gradient. Although no consensus has been reached,
it seems to be well accepted that the methods based on
quadratic or Lagrange polynomials are better than other
simpler methods (Jones, 1998a and 1998b; Florinsky, 1998).

Among the methods tested in this research, the Evans
method and the Horn method are based on a quadratic
polynomial and the Zevenbergen-Thorne method, and the
modified Zevenbergen-Thorne method are based on a
Lagrange polynomial. The quadratic polynomial can be
given as follows (Shary, 1995):

(1)

and the Lagrange polynomial can be given as follows
(Florinsky, 1998):

(2)

The values of the coefficients in these polynomials for the
square and circular neighborhoods are listed in Tables 1 and 2.
Details of the derivation can be found in the Appendix of
this paper.

The coefficient values of the quadratic polynomial, as
shown in Table 1, are quite different for the two kinds of
neighborhoods. Since the gradient is calculated based on
p and q, it can be expected that the Evans method will
produce different gradient values under different neighbor-
hood shapes. On the other hand, as shown by Table 2,
among the nine coefficients of the Lagrange polynomial, a, b,
c, and s are different for the two kinds of neighborhoods, but
r, t, p, q, and u stay the same. Since the gradient is based on
p and q, the shape of the neighborhood does not affect a
calculation using the Lagrange polynomial. For testing the
performance of the circular neighborhood under the Lagrange
polynomial, a modified Zevenbergen-Thorne method is
implemented. This new method first calculates the slope
gradient of a given cell using the conventional Zevenbergen-
Thorne method, and then rotates the kernel for 45 degrees
and uses the four values in the diagonal directions to calcu-
late the slope gradient again. The average of the two values
is then assigned to the given cell as its overall slope gradient.
This method is an integration of the Zevenbergen-Thorne
method and the “Diagonal Ritter” method described by Jones
(1998a) and allows incorporation of the information from
the diagonal directions. In this paper, this new method is
referred to as the Modified Z&T method.

� sxy � px � qy � u.

Z � ax2y2 � bx2y � cxy2 �
1
2 rx2 �

1
2 ty2

Z �
1
2 rx2 � 1

2 ty2 � sxy � px � qy � u,
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Figure 1. Definitions of (a) the square neighborhood and (b) the circular neighborhood.

05-036  1/11/06  3:05 AM  Page 144



Methods for Evaluation of the Circular Neighborhood
Herein in this paper, the six methods tested in this research
are referred to as EVANS-SQR, EVANS-CIR, M-Z&T-SQR, M-Z&T-
CIR, HORN, and Z&T.

Accuracy for a Smooth Surface
Following Hodgson (1995) and Jones (1998a), Morrison’s
surface (Morrison, 1971 and 1974) was used to evaluate the
accuracy of the results from different methods for a smooth
surface. Morrison’s surface is a synthetic smooth surface
generated using a polynomial of 49 trigonometric terms. The
gradient at any location on this surface can be calculated
analytically. In this research, the gradient values so calcu-
lated were used as true values to validate the results from
other methods. Rasterization of Morrison’s surface was
performed in order to calculate slope gradient using the six
finite-difference methods tested in this research. The six
methods were applied to the rasterized Morrison’s surface at
different resolutions, and the results were compared with
the analytical values at the centers of cells. The statistics
used for the comparison include the mean average error
(MAE), root mean square error (RMSE), and R2. These statistics
were calculated between the gradient layer containing the
analytical values and each of the layers generated using the
finite-difference methods.

Sensitivity to Error
Hunter and Goodchild (1996) and Jones (1998b) used noised
surfaces to evaluate the sensitivity of gradient-calculation
methods to error in the input DEM. A noised surface is created
by adding random noise to the original DEM surface. The same
gradient-calculation method is then applied to both the noised
surface and the original surface. If the difference between the
results from the two surfaces is small, the method is consid-
ered to be insensitive to the noise. In this research, we used
Morrison’s surface and two USGS DEMs as the original surfaces.

Hunter and Goodchild (1996) especially discussed the
influence of the spatial autocorrelation in the error on
the slope gradient calculated from a DEM. In this research,
spatially autocorrelated noise values were created through an
Inverse Distance Weighted (IDW) interpolation: First, a given
number of random points are generated, whose locations and
values are randomly assigned. The values of these points vary

between (DEMmin � DEMmax) and (DEMmax � DEMmin),
where DEMmin and DEMmax are the minimum and maximum
values in the DEM. An IDW interpolation is then performed
based on these random points to create a smooth noise
surface. Then, a number of locations in this smooth noise
surface are randomly selected, and their values are spatially
shuffled to create a new noise surface with weaker spatial
autocorrelation. As the percentage of shuffled locations
increases, the spatial autocorrelation in the surface decreases.
Figure 2 gives an example of noise surfaces with different
degrees of spatial autocorrelation created in this way.

A noised surface is created by adding a noise surface to the
original surface, which is represented by the equation below:

(3)

where c is a factor controlling the magnitude of noise in the
resulting noised surface. Following Jones (1998b), RMSE was
calculated between the gradient layer of the original surface
and the gradient layer of its corresponding noised surface to
evaluate the difference between the two.

Comparison Based on Ground Truth
A set of slope gradient values measured by soil scientists in
the field were used as true values to validate the computer-
calculated values. The MAE, RMSE, R2, and a new index,
agreement coefficient (AC), were used to compare the field
values and the calculated values. AC is an index that meas-
ures how well the predicted values agree with the observed
values (Zhu et al., 1997). AC is defined as (Willmott, 1984)

(4)

where N, in this research, is the number of the field sites for
which both the observed and calculated gradient values are
available, and PE is the potential error variance. PE is defined as:

(5)

where is the mean of the true values, and Oi and Pi are
the observed and calculated gradient values for the ith site,
respectively. AC varies between 0 and 1, where 1 indicates
perfect agreement and 0 indicates complete disagreement.

O�

PE � a
N

i�1
a 0Pi � O� 0 � 0Oi � O� 0 b2

AC � 1 � N*RMSE 2/PE

Noised Surface � Original Surface � c*Noise Surface
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TABLE 1. THE COEFFICIENT VALUES IN THE QUADRATIC POLYNOMIAL FOR THE TWO KINDS OF NEIGHBORHOODS

Coefficient Square Neighborhood Circular Neighborhood

r [(z1 � z3 � z4 � z6 � z7 � z9) � 2(z2 � z5 � z8)]/3w2 (z1 � z3 � 3z4 � 3z6 � z7 � z9 � z2 � 8z5 � z8)/4w2

t [(z1 � z2 � z3 � z7 � z8 � z9) � 2(z4 � z5 � z6)]/3w2 (z1 � z3 � 3z2 � 3z8 � z7 � z9 � z4 � 8z5 � z6)/4w2

s (z3 � z7 � z1 � z9)/4w2 (z3 � z7 � z1 � z9)/2w2

p (z3 � z6 � z9 � z1 � z4 � z7)/6w (�2�z3 � 2z6 � �2�z9 � �2�z1 � 2z4 � �2�z7)/8w
q (z1 � z2 � z3 � z7 � z8 � z9)/6w (�2�z1 � 2z2 � �2�z3 � �2�z7 � 2z8 � �2�z9)/8w
u [5z1 � 2(z2 � z4 � z6 � z8) � z1 � z3 � z7 � z9]/9 z5

TABLE 2. THE COEFFICIENT VALUES IN THE LAGRANGE POLYNOMIAL FOR THE TWO KINDS OF NEIGHBORHOODS

Coefficient Square Neighborhood Circular Neighborhood

a [(z1 � z3 � z7 � z9)/4 � (z2 � z4 � z6 � z8)/2 � z5]/w4 [(z1 � z3 � z7 � z9) � (z2 � z4 � z6 � z8)]/w4

b [(z1 � z3 � z7 � z9)/4 � (z2 � z8)/2]/w3 [(z1 � z3 � z7 � z9) � �2� (z2 � z8)]/w3

c [(�z1 � z3 � z7 � z9)/4 � (z4 � z6)/2]/w3 [(�z1 � z3 � z7 � z9)/�2� � (z2 � z8)]/w3

r [(z4 � z6)/2 � z5]/2w2 [(z4 � z6)/2 � z5]/2w2

t [(z2 � z8)/2 � z5]/2w2 [(z2 � z8)/2 � z5]/2w2

s (�z1 � z3 � z7 � z9)/4w2 (�z1 � z3 � z7 � z9)/2w2

p (�z4 � z6)/2w (�z4 � z6)/2w
q (z2 � z8)/2w (z2 � z8)/2w
u z5 z5
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Data
Two series of surfaces were used in this research. The first
series consists of rasterized Morrison’s surfaces with differ-
ent cell sizes, including 20, 10, 2, 1, and 0.5. The second
series includes two USGS DEMs covering a small watershed
called “Raffelson” in Wisconsin (Bangor Quadrangle). The
two USGS DEMs cover the same area but one is at 30 m
resolution and the other is at 10 m resolution. The Raffelson
study area contains two broad ridges and a relatively open
and flat floodplain. The terrain between the ridges and the
floodplain is rugged, containing narrow alluvial valleys and
steep side slopes. Elevation of this area varies between 250 m
and 420 m; the mean elevation is about 320 m. Slope
gradient of this area varies between 0 and about 70 percent.
The mean slope gradient is about 25 percent. The contour
lines in Figure 4 illustrate the two series of surfaces.

Rasterized Morrison’s surfaces were used to evaluate the
accuracy for a smooth surface. For each raster layer at a particu-
lar resolution, slope gradient was calculated using different
neighborhood sizes, varying from one to ten times of that layer’s
cell size, with one cell size as the increment (i.e., a total of ten
different neighborhood sizes were used for each layer).

Both series of surfaces were used in the comparison on
sensitivity to noise. Neighborhood sizes tested included
one to ten times of the cell size, with one cell size as the

increment. Noised surfaces were created using noise
surfaces with different degrees of spatial autocorrelation
and different noise factors (i.e., c in Equation 4). The
percentages of shuffled locations included 0 percent,
20 percent, 40 percent, 60 percent, 80 percent, and 100
percent. The noise factors tested were 0.01, 0.02, 0.04,
0.08, and 0.16.

Under each unique combination of neighborhood size,
shuffle rate, and noise factor, 30 different noise surfaces were
created for an original surface, which in turn were used to
create 30 noised surfaces. With the resulting 30 noised
surfaces, 30 RMSE values were calculated between the noised
surfaces and the original surface. The mean of these 30 RMSE
values were used to compare results from different gradient-
calculation methods and neighborhood sizes. Figure 3
describes the process of calculating the mean of RMSEs for an
example setting. The process illustrated in Figure 3 was
repeated for all parameter settings tested in this research.

In a soil survey project in the Raffelson area, soil scien-
tists measured slope gradients at 90 sample locations in the
field. These 90 field measurements were used to validate the
results calculated by the six gradient-calculation methods
from the two USGS DEMs (10 m and 30 m) using ten different
neighborhood sizes (10 m to 100 m, with a 10 m increment).
The locations of the 90 samples are shown in Figure 4b.
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Figure 2. Noise surfaces with different degrees of spatial autocorrelation: (a) shuffle rate � 0, (b)
shuffle rate � 20 percent, (c) shuffle rate � 40 percent, (d) shuffle rate � 60 percent, (e) shuffle
rate � 80 percent, and (f) shuffle rate � 100 percent.
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Results and Discussion
Difference of the Calculated Slope Gradient Values
The general spatial patterns of the calculated slope gradient
values from all the six methods are very similar, but differ-
ences at a particular location can be significant. As an
example, Figure 4 shows the images derived by subtracting
the slope gradient layers calculated using EVANS-SQR from
the layers calculated using EVANS-CIR. Figure 4a is based on
a rasterized Morrison’s surface (cell size � 10), and Figure
4b is based on the USGS 10 m DEM. The neighborhood sizes
for deriving the two images are both five times of their
corresponding cell sizes. Contour lines of elevation are
superimposed on the images for checking the relationship
between the difference values and landform.

The spatial pattern in the difference layer based on
Morrison’s surface is clear. Values from the circular neigh-
borhood tend to be smaller than the values from the square
neighborhood in relatively flat areas, including ridge tops,
saddles, and valleys, but tend to be greater in relatively
steep areas. In other words, for a smooth surface the circular
neighborhood may present the flat areas to be “flatter” and
the steep areas to be “steeper”. When the slope gradient is
measured in percentage (i.e., 100 * tangent of degree), at
most locations the differences between the values from the
two kinds of neighborhoods are smaller than 1. The values
in Figure 4a range from �0.31 to 1.14, with mean � 0.40
and standard deviation � 0.25.

For the USGS 10 m DEM, which covers a rugged area, the
pattern in the difference layer is not very simple. However, it
seems that steep side slopes still tend to get higher values
from the circular neighborhood. Figure 4b also shows that in
a rugged area, the difference resulting from the two different
neighborhoods can be more significant than that for a smooth
surface. The values in Figure 4b range from �5.12 to 7.37,
with mean � 0.54 and standard deviation � 1.13.

The difference between the values from the two different
neighborhoods is eventually determined by the differences
between the corresponding elevation values in the diagonal
directions in the two neighborhoods, thus this difference is a

function of both the cell size of the DEM and the ratio of the
user-specified neighborhood size to the cell size. When the
cell size is fixed, increasing the ratio is likely to increase the
difference, because a higher ratio results in a greater geo-
graphic distance between the corresponding diagonal points
in the two neighborhoods, which may lead to a bigger change
in elevation. When the ratio is fixed, a bigger cell size also
leads to a greater geographic distance between the correspon-
ding diagonal points in the two neighborhoods, and in turn a
greater difference of elevation. These effects will be more
significant in a rugged area than in a gentle or smooth area.

Accuracy for a Smooth Surface
The calculations using rasterized Morrison’s surfaces at
different resolutions show a common pattern. First, for all
the methods, generally the smaller the neighborhood size,
the more accurate the calculated slope gradient value (i.e.,
the smaller MAE, RMSE, and the higher R2 values), no matter
if the smaller neighborhood resulted from a smaller cell size
or from the user-specification independent of cell size. The
only exception is Z&T, whose accuracy is constant when the
user-specified neighborhood is smaller than or equal to the
traditional resolution-determined size (i.e., two times of the
cell size). For all the other methods, specifying a neighbor-
hood smaller than the traditional size leads to an accuracy
higher than that from a calculation using the traditional
size. Second, for all the tested cell sizes, when the neigh-
borhood size is equal to or smaller than the traditional size,
Z&T is the best among the six methods, which confirms
Jones’ finding (Jones, 1998a and 1998b). Z&T is followed by
M-Z&T-CIR, EVANS-CIR, M-Z&T-SQR, HORN, and EVANS-SQR, but
the differences among all the methods are very small. When
the neighborhood extends beyond the traditional size, the
two circular-neighborhood methods agree with Z&T and
become significantly more accurate than the three square-
neighborhood methods. Figure 5 illustrates the pattern using
the result from one surface (cell size � 10) as an example. As
shown by Figure 5, when the neighborhood is smaller than
or equal to 20 (which is the traditional size for a surface
with a cell size � 10), the differences among the six
methods are so small that are even not visually discernable
in this figure; as the neighborhood increases, the accuracies
of all the methods decrease, but those of the circular-
neighborhood methods and Z&T decrease slower than those
of the square-neighborhood methods; once the neighbor-
hood is large enough, the circular-neighborhood methods
steadily surpass Z&T, in terms of MAE and RMSE (the actual
data indicate that this threshold of neighborhood size is 5
times of the cell size or 2.5 times of the traditional neigh-
borhood size).

This pattern is partly predictable. Morrison’s surface
is a smooth surface whose first-order derivative is continu-
ous. Thus when using a finite-difference method it can be
expected that the gradient value (derivative) calculated by a
method using elevations of points closer to the center of the
kernel will match the analytical result better. This explains
the fact that smaller cell sizes and neighborhood sizes give
better results in the comparison. This also explains why the
circular-neighborhood methods perform better than the
square-neighborhood methods: in the circular neighborhood,
the values in the four diagonal locations are closer to the
center of the kernel than their counterparts in the square
neighborhood. One possible reason for that Z&T performs
best when the neighborhood is small is that the Lagrange
polynomial used by Z&T is an exact fit to the nine points in
the neighborhood, and the difference calculated by it for a
smooth surface will be closer to the analytical difference
than the difference calculated from the least-squares fitted
quadratic polynomial.
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Figure 3. An example process of calculating the mean
RMSE for a unique parameter setting in the comparison
on sensitivity-to-error.
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After all, it is important to point out that the above
pattern is only valid for smooth surfaces which are differen-
tiable everywhere and the analytical values can be treated as
true values. Also, this pattern has nothing to do with the
degree of agreement between the computer-calculated values
and human-measured values.

Sensitivity to Error
It is interesting to find that the sensitivity results from a
synthetic smooth surface and the real DEMs covering a
rugged area are very similar (Figures 6 and 7). Generally, the

circular-neighborhood methods are more sensitive to error
added to the original surfaces than the square-neighborhood
methods, but are less sensitive than Z&T. Figures 6 and 7
illustrate some details of the comparison results from one
rasterized Morrison’s surface (cell size � 10) and the 10 m
USGS DEM. For all the tested noise factors (i.e., c in Equation
4) and shuffle rates, Figures 6 and 7 show only the results
from some selected settings, which are sufficient for demon-
strating the patterns. As illustrated by Figures 6 and 7, the
overall trend is that the sensitivity decreases as the neigh-
borhood size increases, no matter what method is used.
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Figure 4. Difference between the results from the different neighborhoods (EVANS-CIR minus EVANS-SQR):
(a) calculated from a rasterized Morrison’s surface, cell size � 10. The contour lines show the elevation,
and (b) calculated from 10 m USGS DEM covering the Raffelson study area. The contour lines show the
elevation. The white dots show the locations where slope gradients were measured in the field.
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However, different spatial autocorrelation levels of the
noise (i.e., shuffle rates) may cause very different behaviors
between the tested methods. When the autocorrelation is
very strong (shuffle rate � 0), the RMSE is small, indicating
that noise with strong spatial autocorrelation does not
significantly affect the result of a gradient calculation. With
a zero shuffle rate, the two circular-neighborhood methods
group with Z&T and are consistently more sensitive than
the three square-neighborhood methods. In addition, at a
zero shuffle rate the difference between the two groups
of methods increases as the neighborhood size increases.
However, the absolute value of that difference remains very
small. For example, even when the neighborhood size is ten
times of the cell size and the noise factor (c) is as high as
0.16, the difference between EVANS-SQR and EVANS-CIR is

only about 0.1 for the Morrison’s surface and about 0.04 for
the USGS DEM.

Increasing the shuffle rate to 20 percent causes a jump
in the magnitude of the RMSE, but that magnitude decreases
dramatically as the neighborhood size increases. At this
shuffle rate, especially when the neighborhood size is
greater than three times of the cell size (i.e., 1.5 times of
the traditional neighborhood size), the two circular-
neighborhood methods deviate from Z&T and behave more
like the three square-neighborhood methods. Occasionally
they are even less sensitive than the square-neighborhood
methods (e.g., when the neighborhood size is four times of
the cell size). A totally random distribution of noise values
(shuffle rate � 100 percent) results in a pattern similar to
that from the 20 percent rate, albeit it noticeably increases
the RMSE.

Comparison Based on Ground Truth
The results of validating the calculated gradient values using
the 90 field-measured values are presented in Figures 8 and 9.
Figure 8, which is for the result based on the 10 m DEM,
shows that there indeed exists an optimal neighborhood
size for matching the field measurements. For this particu-
lar study area and this particular DEM, this optimal neigh-
borhood size is around 30 m, which is 1.5 times of the
traditional resolution-determined size. Around 30 m, the
results from different methods are fairly close to each
other, except that Z&T is significantly worse than all the
other methods in terms of R2. When the neighborhood
size is smaller than 30 m, the square-neighborhood meth-
ods are slightly better than the circular-neighborhood
methods. When the neighborhood size is greater than 30 m,
especially when greater than 40 m, the circular-neighbor-
hood methods perform better than all the other methods.
The relatively gentle curves of the circular-neighborhood
methods displayed in Figure 8 also indicate that the
“optimal ranges” of these curves are wider than those of
the other curves. An implication of this is that when the
most optimal neighborhood size is unknown, using a
circular neighborhood may have a higher probability of
better matching the field measurements.

The result based on the 30 m DEM is somewhat differ-
ent. First, all the four statistics indicate that the slope
gradient values calculated from the 30 m DEM diverge
more from the field measurements than the values from
the 10 m DEM. Second, the “most optimal” neighborhood
size is 10 m, which is the smallest user-specified size tested
and is one sixth of the traditional resolution-determined
size. This second finding indicates that using a user-specified
neighborhood size may improve the quality of terrain
attribute values derived from a low resolution DEM. Third,
when the neighborhood is small, the best method for the
10 m DEM, EVANS-SQR, becomes the worst for the 30 m
DEM, and the worst one for the 10 m DEM, Z&T, becomes
the best for the 30 m DEM. Fourth, the accuracy of all
methods drops sharply once the neighborhood extends
beyond 60 m, but the accuracy of the two circular-neigh-
borhood methods drops slower than all the other methods.
Finally, for the 30 m DEM, the two circular-neighborhood
methods always perform better than the three square-
neighborhood methods.

Conclusion
In this research, a circular neighborhood was implemented
for the Evans method and a modified Zevenbergen-Thorne
method for calculating slope gradient from a gridded DEM.
Three approaches were used to compare the results from the
circular neighborhood with the results from the traditional
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Figure 5. Comparison on the accuracy of the slope
gradients calculated by different methods under differ-
ent neighborhood sizes for Morrison’s surface, using the
analytical values as true values (cell size � 10).
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Figure 6. Comparison on the sensitivity to error of different gradient-calculation methods, using
Morrison’s surface as the original surface (cell size � 10).

square neighborhood. A comparison based on Morrison’s
surface reveals that, for a smooth surface, a circular-neigh-
borhood method is more accurate than a square-neighborhood
method. In addition, when the ratio of the user-specified
neighborhood size to the cell size is large enough (the
threshold is 5), a circular-neighborhood methods can be
even more accurate than the Zevenbergen-Thorne method
(as measured by MAE and RMSE).

Tests using noised surfaces show that a circular-neighborhood
method is generally more sensitive to error in the DEM than a
square-neighborhood method, but is generally less sensitive
than the Zevenbergen-Thorne method. When the error has a
strong spatial autocorrelation, the difference between a circu-
lar-neighborhood method and a square-neighborhood method
is apparent and the difference increases as the neighborhood
size increases. However, in this situation the RMSE between
the values calculated from the original and noised surfaces
itself is very small. When the spatial autocorrelation in the
error is not so strong, a circular neighborhood method
behaves more like a square-neighborhood method, especially
when the neighborhood size is large, where occasionally a
circular neighborhood method can be even less sensitive
than a square-neighborhood method.

A validation based on field measurements shows that
the circular neighborhood performs better in general than
the square neighborhood when the neighborhood size is
large and/or the resolution of the DEM is low. When both the
neighborhood size and the cell size are small, the difference
between the results from the two kinds of neighborhoods is

small and inconsistent. In any case, a circular neighborhood
method has a wider optimal range of neighborhood size than
other tested methods, indicating that when the most optimal
neighborhood size is unknown, using a circular neighbor-
hood may have a higher probability of better matching the
field measurements.

Some general conclusions can be drawn from these
findings. First, the circular-neighborhood methods tested in
this research are a compromise between the Zevenbergen-
Thorne method (using only the four points in the cardinal
directions) and the methods using an eight-point square
neighborhood. The Zevenbergen-Thorne method is more
accurate for a smooth surface, but is more sensitive to noise
in the DEM, whereas the square-neighborhood methods are
less accurate for a smooth surface, but are less sensitive to
noise. The circular-neighborhood methods perform between
the two when the neighborhood size is small, and may
surpass those traditional methods when the ratio of neigh-
borhood size to cell size is large. If the sensitivity to error is
the main concern when choosing a method, a circular
neighborhood does not have advantage. However, a method
insensitive to error may also be insensitive to real variation
in the data. In terms of the overall performance, the circular
neighborhood is a good alternative to the traditional square
neighborhood. If a GIS package only implements one method
for calculating slope gradient, the circular neighborhood
should be considered.

Second, the circular neighborhood may be more
advantageous when used together with a user-specified
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Figure 7. Comparison on the sensitivity to error of different gradient-calculation methods, using 10 m
USGS DEM as the original surface.

neighborhood size on a high-resolution DEM. The case study
presented in this paper demonstrates that the most optimal
neighborhood size for matching field measurements may be
different from the traditional resolution-determined size.
The case study also shows that the circular neighborhood
methods surpass all the other methods when the ratio of
neighborhood size to cell size is large. More work is needed
to find out if this is a general pattern. If it is, it may have
significant implications for future terrain analyses in
(human) knowledge-related applications (e.g., knowledge-
based soil mapping), since high-resolution DEMs are becom-
ing more readily available. For such DEMs, the user may
want to specify a neighborhood size greater than the
resolution-determined size for a better match between the
calculated values and the field measurements.

Future work may include comparisons of the two kinds
of neighborhoods using field measurements from different
study areas, using DEMs at very high resolutions, and using
higher-order terrain attributes, including various curvatures.
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Appendix
Derivation of Coefficient Values in the Quadratic and Lagrange Polynomials
for the Circular Neighborhood
Refer to Equation 1 for the quadratic polynomial and Figure 1
for the positions of z1, z2, . . . z9. Values for r, t, s, p, q, and
u in Equation 1 can be obtained by fitting a second-order
surface defined by Equation 1 to the nine points with
elevation values z1, z2, . . . z9. A least squares method to
achieve this fit is to use the following equation (Pennock
et al., 1987):

(A1)

where z is a 9 � 1 matrix composed of z1, z2, . . . z9, � is a
6 � 1 matrix composed of the six coefficients in Equation 1
(Note that r and t should be used in �). F is a 9 � 6
matrix of the form:

1
2

1
2 

FTFb � FTz

(w/�2�)2 (w/�2�)2 �(w/�2�)2 �w/�2� w/�2� 1
0 w2 0 0 w 1
(w/�2�)2 (w/�2�)2 (w/�2�)2 w/�2� w/�2� 1
w2 0 0 �w 0 1
0 0 0 0 0 1
w2 0 0 w 0 1
(w/�2�)2 (w/�2�)2 (w/�2�)2 �w/�2� �w/�2� 1
0 w2 0 0 �w 1
(w/�2�)2 (w/�2�)2 �(w/�2�)2 w/�2� �w/�2� 1

and FT is the transpose matrix of F. � is solved as

(A2)b � (FTF)�1FTz
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Figure 8. Validation using field measurements, based on the USGS 10 m DEM.

Therefore, the coefficients in � can be solved as:

 p ��12z1/18w2 � 12z3/18w2 � z4/14w2 � z6/14w2
 � 1z3 � z7 � z1 � z9 2/2w2

  s � �z1/12w2 2 � z3/12w2 2 � z7/12w2 2 � z9/12w2 2
 � 1z1 � z3 � 3z2 � 3z8 � z7 � z9 � z4 � 8z5 � z6 2/4w2

� z6/18w2 2 � z7/8w2 � 3z8/8w2 � z9/18w2 2]
 t � 2[z1/(8w2) � 3z2/(8w2) � z3/(8w2) � z4/(8w2) � z5/w

2

 � 1z1 � z3 � 3z4 � 3z6 � z7 � z9 � z2 � 8z5 � z8 2/4w2

� 3z6/8w2 � z7/8w2 � z8/(8w2) � z9/(8w2)]

 r � 2[z1/(8w2) � z2/(8w2) � z3/(8w2) � 3z4/(8w2) � z5/w
2

1/(8w2) �1/(8w2) 1/(8w2) 3/(8w2) �1/w2 3/8w2 1/8w2 �1/(8w2) 1/(8w2)
1/(8w2) 3/(8w2) 1/(8w2) �1/(8w2) �1/w2 �1/(8w2) 1/(8w2) 3/(8w2) 1/(8w2)
�1/(2w2) 0 1/(2w2) 0 0 0 1/(2w2) 0 �1/(2w2)
��2�/(8w) 0 �2�/(8w) �1/(4w) 0 1/(4w) ��2�/(8w) 0 �2�/(8w)
�2�/(8w) 1/(4w) �2�/(8w) 0 0 0 ��2�/(8w) �1/(4w) ��2�/(8w)
0 0 0 0 1 0 0 0 0

Refer to Equation 2 for the Lagrange polynomial and
Figure 1 for the positions of z1, z2, . . . z9. Following
Zevenbergen and Thorne (1987), the goal of the derivation
is to exactly fit a Lagrange surface to the nine points in
the neighborhood. Therefore, values for the coefficients
in the polynomial can be obtained by solving the fol-
lowing equation group for the unknowns a, b, c, r, t, s,
p, q, and u:

  u � z5

 � 112z1 � 2z2 � 12z3 � 12z7 � 2z8 � 12z9 2/8w

� z8/(4w) � 12z9/(8w)

 q � �12z1/(8w) � z2/(4w) � 12z3/(8w) � 12 z7/(8w)

 � 112z3 � 2z6 � 12z9 � 12z1 � 2z4 � 12z7 2/8w

� 12z7/(8w) � 12z9/(8w)

(FTF)�1FT is constant and its resulting 6 � 9 matrix is as follows:
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Figure 9. Validation using field measurements, based on the USGS 30 m DEM.

 � c1�w/12 2 1�w/12 22 � 1
2 r1�w/12 22 � 1

2 t1�w/12 22
 z7 � a1�w/12 221�w/12 22 � b1�w/12 221�w/12 2
 z6 � 1

2 rw2 � pw � u

 z5 � u

 z4 � 1
2 r 1�w22 � p1�w2 � u

� s1w/12 2 1w/12 2 � p1w/12 2 � q1w/12 2 � u

� 1
2 r1w/12 22 � 1

2 t1w/12 22
 z3 � a1w/12 221w/12 22 � b1w/12 221w/12 2� c1w/122 1w/12 22
 z2 � 1

2 tw2 � qw � u

�  s1� w/12 2 1w/12 2 � p1�w/12 2 � q1w/12 2 � u

� c1�w/12 2 1w/12 22 � 1
2 r1�w/12 22 � 1

2 t1w/12 22
 z1 � a1�w/12 221w/12 22 � b1�w/12 221w/12 2
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